Recent Advances in Boundary Layer Ingestion Technology of Evolving Powertrain Systems

Author:

Diamantidou Dimitra EiriniORCID,Hosain Md Lokman,Kyprianidis Konstantinos G.ORCID

Abstract

The increasing environmental concern during the last years is driving the research community towards reducing aviation’s environmental impact. Several strict goals set by various aviation organizations shifted the research focus towards more efficient and environmentally friendly aircraft concepts. Boundary Layer Ingestion (BLI) is currently investigated as a potential technology to achieve different design goals such as energy efficiency improvement and noise emission reductions in the next generation of commercial aircraft. The technology principle is to place the propulsive unit within the boundary layer generated by the airframe body. Although several studies showed its theoretical benefits, a multidisciplinary nature is introduced in the design phase. This imposes new challenges on the current design tools. An increasing number of publications are focusing on assessing this technology while taking into account interlinks between different disciplines. The goal of this work is to review the current state-of-the-art of BLI evaluation studies. Particular focus is given to the underlying assumptions of each work, the methodology employed, and the level of fidelity of the tools used. By organizing the available work in a comprehensive manner, the up-to-date results are interpreted. The current trends and trade-offs emerging from studies are presented. Through reviewing the ongoing published work, the next steps for further development of the methods that will assess this technology are derived.

Funder

European Commission, Horizon 2020 program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference164 articles.

1. Strategic Research and Innovation Agenda (SRIA),2012

2. European Aviation Environmental Report,2016

3. Overview of the NASA Environmentally Responsible Aviation Project's Propulsion Technology Portfolio

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3