Evaluating one engine inoperative conditions in subscale electric vertical take-off and landing aircraft: An in-depth tethered hover test analysis

Author:

Kang Youngshin1ORCID,Cho Am1,Choi Seongwook1,Kim Yushin1,Bae Jongmin1,Cho Junho1,Ko Donghyeon1,Yun Haneul1

Affiliation:

1. OPPAV Development Team, Korea Aerospace Research Institute, Daejeon, Korea

Abstract

The direction of propeller rotation in a distributed electric-powered vertical take-off and landing (eVTOL) aircraft significantly influences control forces and induced drag during both helicopter and fixed-wing modes. This study proposes a strategy to determine the most effective rotational direction for each propeller. This approach effectively mitigates one-engine-inoperative (OEI) conditions during helicopter mode for a subscale eVTOL referred to as the optionally piloted personal air vehicle (OPPAV). Moreover, the study developed an optimal control law using the linear programming method, which minimizes the maximum power required for individual motors under OEI conditions. The lowest maximum power was achieved under OEI conditions when both the front and rear propellers in each pod rotated in the same direction. Furthermore, to validate this proposed control law, a tethered hover test was performed using the subscale OPPAV under OEI conditions. Our findings demonstrate that determining the rotational direction of propellers using the newly proposed reconfiguration control method significantly enhances the safety of eVTOL aircraft operating under OEI conditions.

Funder

Ministry of Trade, Industry and Energy of Korea

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference22 articles.

1. Choi S, Hwang C, Kang H, et al. A control method for a compound type of vertical takeoff and landing (VTOL) aircraft with Tilt Propellers and Lift Propellers, Korean Patent No. 10-2179828, filed 24 September 2019, issued 11 11 November 2020.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3