Affiliation:
1. Caterham F1, UK
2. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Australia
Abstract
A computational fluid dynamics study of the influence of wing span has been conducted for an inverted wing with endplates in ground effect. Aerodynamic coefficients were determined for different spans at different ground clearances, highlighting a trend for shorter spans to delay the onset of both separation and resulting loss of negative lift. The vortices at the wing endplates were not observed to change significantly in terms of strength and size; thus, at shorter spans, their influence over a larger percentage of the wing helped the flow stay attached and reduced the severity of the adverse pressure gradient which invokes separation at greater spans. Consequently, it was shown that, compared to a large-span wing, a wing with a shorter span may have a lower lift coefficient but can operate closer to the ground before performance is adversely affected.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献