The Influence of Compressibility on the Aerodynamics of an Inverted Wing in Ground Effect

Author:

Doig Graham,Barber Tracie J.1,Neely Andrew J.2

Affiliation:

1. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2031, Australia

2. School of Engineering and Information Technology, The University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600, Australia

Abstract

For inverted wings in close ground proximity, such as race car configurations, the aerodynamic ground effect can produce local velocities significantly greater than the freestream and the effects of compressibility may occur sooner than would be expected for a wing that is not close to a ground plane. A three-dimensional computational fluid dynamics study was conducted, involving a modified NASA GA(W)-2 LS [1]-0413 MOD inverted wing with an endplate, to investigate the onset and significance of compressibility for low subsonic Mach numbers. With the wing angle of incidence fixed, Mach numbers from 0.088 to 0.4 were investigated, at ground clearances ranging from infinite (free flight) to a height-to-chord clearance of 0.067. The freestream Mach number at which flow compressibility significantly affects the predicted aerodynamic coefficients was identified to be as low as 0.15. Beyond this point, as the compressible flow conditions around the wing result in changed pressure distribution and separation behavior, treating the flow as incompressible becomes inappropriate and leads to consistent underprediction of lift and drag. The influence on primary vortex behavior of density changes around the wing was found to be relatively inconsequential even at the higher end of the Mach scale investigated. By a freestream Mach number of 0.4 and at low clearances, local supersonic flow regions were established close to the suction peak of the lower wing surface in compressible simulations; the formation of a normal shock wave between the wing and the ground was shown to result in significant increases in separation and therefore overall drag, as well as a distinct loss of downforce.

Publisher

ASME International

Subject

Mechanical Engineering

Reference31 articles.

1. Ground Effect Aerodynamics of Race Cars;Zhang;Appl. Mech. Rev.

2. Aerodynamics of Race Cars;Katz;Annu. Rev. Fluid Mech.

3. Maglev Launch and the Next Race to Space;Powell

4. Aerodynamics of High Speed Trains;Schetz;Annu. Rev. Fluid Mech.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3