Affiliation:
1. School of Astronautics, Harbin Institute of Technology, Harbin, Heilongjiang, China
Abstract
Aiming at improving the autonomy of hypersonic entry vehicles, a rapid trajectory optimization algorithm, which has the potential to be implemented online and onboard, is proposed in this paper. The nonlinear and nonconvex hypersonic entry trajectory optimization problem is transformed into a series of convex subproblems through a proper combination of the pseudospectral method and an improved successive convexification method; thus, the high discretization accuracy of the pseudospectral method and the fast and deterministic convergence properties of the convex-optimization-based algorithm can be simultaneously exploited. The resulting subproblems can be solved efficiently by matured interior-point methods, and the solution converges rapidly by adopting a novel dynamic trust-region updating approach. The optimality of the solution is verified by the optimal control theory. The effectiveness of the algorithm is demonstrated by numerical experiments.
Funder
Fundamental Research Funds for the Central Universities
Open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献