Affiliation:
1. School of System Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
Abstract
This paper introduces an improved sequential convex programming algorithm using adaptive non-uniform discretization for the hypersonic entry problem. In order to ensure real-time performance, an inverse-free precise discretization based on first-order hold discretization is adopted to obtain a high-accuracy solution with fewer temporal nodes, which would lead to constraint violation between the temporal nodes due to the sparse time grid. To deal with this limitation, an adaptive non-uniform discretization is developed, which provides a search direction for purposeful clustering of discrete points by adding penalty terms in the problem construction process. Numerical results show that the proposed method has fast convergence with high accuracy while all the path constraints are satisfied over the time horizon, thus giving potential to real-time trajectory planning.
Funder
Guangzhou Municipal Science and Technology Bureau
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献