Effects of asymmetric stroke deviation on the aerodynamic performance of flapping wing

Author:

Hu Fujia1ORCID,Wang Yuanying1,Li Dian1,Liu Xiaomin1ORCID

Affiliation:

1. Department of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, P. R. China

Abstract

The kinematics of insect flapping flight are complex and asymmetric, which are contributed to their superior flying capabilities, and the design of novel flapping micro air vehicles can draw inspiration from relevant researches. Previous studies usually focus on the wing with asymmetric stroke or pitch motions. A trajectory with asymmetric deviation motion, named as “pear-shaped” pattern, is proposed in current work. The hovering aerodynamics and vortex dynamics of a rigid flapping wing have been numerically investigated by comparing with that of “line-shaped” pattern with no deviation. In order to have a better insight into the influences of the asymmetric deviation, we change the kinematic parameters, that is, stroke amplitude, pitching amplitude, deviation amplitude, and phase lag between stroke and pitch angles. The results show that the wing with asymmetric deviation exhibits superior capability in lift enhancement for most of the cases analyzed, which is accompanied by the extra power cost and slight reduction in efficiency. The asymmetric deviation in cases with high stroke amplitude or low pitching amplitude may be considered as a cost-saving strategy, subject to slight damage on lift generation (if acceptable). Additionally, the asymmetric deviation brings a strong asymmetry into the instantaneous forces during one flapping cycle. The underlying lift-enhancing mechanism is explored by examining the dominant vortex structures in the adjacent flow field of the wing, which is mainly attributed to the changes in the effective angle of attack, increasing with downward deviation and decreasing with upward deviation.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3