Abstract
In this paper, we numerically studied the effect of stroke deviation on the aerodynamic performance of the three-dimensional flapping wing in forward flight at a low Reynolds number. Six deviation motion patterns with different stroke deviation amplitudes were investigated. The results show that the distinct patterns exert a substantial influence on the aerodynamic forces of the flapping wing, with a more pronounced effect at higher values of deviation amplitude. For most patterns, stroke deviation enhances either lift or thrust performance unilaterally. The maximum lift and thrust of the wing with deviation motion can be 37% and 35% larger than that of the wing without deviation motion. A detailed analysis of typical flow characteristics underscores the pivotal role of deviation motion in aerodynamic force generation. Finally, two artificially created innovative deviation motion patterns are proposed, which exhibit an exceptional capacity to augment thrust by up to 123% or enhance comprehensive aerodynamic performance significantly. These findings establish a theoretical foundation for designing high-performance flapping-wing micro-air vehicles.
Funder
National Natural Science Foundation of China
Key Research and Development Projects of Shaanxi Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献