The effect of representative bird model and its impact direction on crashworthiness of aircraft windshield and canopy structure

Author:

Dar Uzair A12,Awais Muhammad3ORCID,Mian Haris H1,Sheikh Muhammad Z1

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China

2. Engineering Simulation and Aerospace Computing (ESAC), Northwestern Polytechnical University, Xi'an, Shaanxi, China

3. Department of Industrial Engineering, Taibah University, Medina, Saudi Arabia

Abstract

A physically representative bird modeling approach is presented to highlight its significance over traditional substitute bird modeling. To give better representation of a real bird, in this study, the bird was modeled as a fluid body while impacting the rigid and deformable structures. For this, an elastic plastic hydrodynamic material model in conjunction with polynomial equation of state is utilized to model the bird behavior. In addition, smoothed particle hydrodynamics (SPH)-based meshless technique was implemented to build real bird model instead of using finite element-based classical mesh technique in order to avoid mesh connectivity and tangling problems. The numerical scheme was validated by comparing the deformation and pressure profile of the impact on rigid and deformable targets with the available experimental data. The results showed that the physically representative bird impacting the rigid and deformable target give correct values of pressure peak than that of substitute bird. The study also revealed that, the bird impacting the target from bottom direction resulted higher magnitude of pressure shock than head, tail or wing direction. In addition, the instantaneous peak impulse during bottom side impact is more detrimental to impacting structure than other impact directions. Finally, after quantifying the effect of bird impact directions, the work was further extended to establish a full-scale numerical model of a military aircraft windshield–canopy structure to determine its dynamic response against similar impact scenarios. The results showed that the bird impacting from bottom side requires relatively less velocity to initiate failure in the windshield than other impact directions. Thus, the bird impacting from its bottom side was recognized as the most dangerous impact condition for structural integrity of windshield.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3