Numerical investigation on energy absorption characteristics of impact-resistant lightweight structure of bio-mimetic micro aerial vehicle

Author:

Jianxun Du1ORCID,Chengzhou Xue1,Zhengjian Feng2,Chaoqi Xu3,Kai Liu4

Affiliation:

1. School of Aeronautics and Astronautics, Tiangong University, Tianjin, China

2. Aerospace Times FeiHong Technology Company Limited, Beijing, China

3. State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

4. Beijing Institute of Astronautical Systems Engineering, Beijing, China

Abstract

With the increasing development of micro aerial vehicle, the impact resistance of the structure has gradually become a research hotspot. The beetle's exoskeleton not only provides important protection for its body and flexible wings but also ensures its good flight performance. Therefore, the beetle's exoskeleton has become an important research content in the field of bio-mimetic micro aerial vehicles. In this study, taking the internal structure of the beetle's exoskeleton as the research object, a kind of bio-mimetic lightweight thin-walled impact-resistant structure that can be used in the micro aerial vehicle is proposed. The energy absorption characteristics of the bio-mimetic structure under axial impact loading are calculated and analyzed by the numerical simulation method, and the important parameters such as impact angle, protective layer thickness, and wall thickness are optimized and discussed. The main results include that the filling method of the hollow column has a certain correlation with the energy absorption characteristics of the structure under different impact angles, and among the different cross-sectional shapes, the hollow column with a circular cross-sectional configuration has the best energy absorption ability. In addition, as the internal space of the structure increase exponentially, the decrease of specific energy absorption value of the bio-mimetic structure is relatively small. Finally, the wall thickness with good energy absorption characteristics is about 1.5 mm, while the preferred span length of the structure is between 90 and 120 mm.

Funder

Shaanxi Technical Innovation Guidance Foundation

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3