Fusing unscented Kalman filter for performance monitoring and fault accommodation in gas turbine

Author:

Lu Feng12,Wang Yafan3,Huang Jinquan12,Huang Yihuan13,Qiu Xiaojie3

Affiliation:

1. Jiangsu Province Key Laboratory of Aerospace Power Systems, Nanjing University of Aeronautics and Astronautics, Nanjing, PR China

2. Collaborative Innovation Center of Advanced Aero-Engine, Beijing, PR China

3. Aviation Motor Control System Institute, Aviation Industry Corporation of China, Wuxi, PR China

Abstract

The Kalman filter is widely utilized for gas turbine health monitoring due to its simplicity, robustness, and suitability for real-time implementations. The most common Kalman filter for linear systems is linearized Kalman filter, and for nonlinear systems are extended Kalman filter and unscented Kalman filter. These algorithms have proven their capabilities to estimate gas turbine performance variations with a good accuracy, and the studies are done provided that all sensor measurements are available. In this paper, a nonlinear fusion approach with consistent diagnostic mechanism based on unscented Kalman filter is proposed, especially for gas turbine performance monitoring in the case of sensor failure. The architecture of fusion method comprises a set of local unscented Kalman filters and an information mixer. The local unscented Kalman filters are utilized to estimate health parameters of various component combinations, and the results are then transferred to the mixer for the integrated estimation of global health state in fusion structure. The consistent fault diagnosis and isolation logic is designed based on the fusion architecture and combined with the fusing unscented Kalman filter, called an improved fusing unscented Kalman filter. A systematic comparison of the generic linearized Kalman filter, extended Kalman filter, and unscented Kalman filter to their fusion filter kinds is presented for engine health estimation of gradual deterioration and abrupt fault. The studies show that the fusing unscented Kalman filter evidently outperforms the fusing linearized Kalman filter and fusing extended Kalman filter, while the fusing Kalman filters have slightly better estimation accuracy than the basic Kalman filters. In addition, the proposed methodology can reach the reliable performance monitoring with measurement uncertainty while the conventional Kalman filters collapse.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3