A New Approach to the Gray-Box Identification of Wiener Models With the Application of Gas Turbine Engine Modeling

Author:

Mohammadi Ehsan1,Montazeri-Gh Morteza2

Affiliation:

1. Systems Simulation and Control Laboratory, School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran e-mail:

2. Professor Systems Simulation and Control Laboratory, School of Mechanical Engineering, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran e-mail:

Abstract

In this paper, a new approach is presented for the gray-box identification of Wiener models (WM); and to evaluate the performance of the proposed method, it is used to estimate the dynamic behavior of a two-shaft industrial gas turbine (GT). The Wiener models, which have attracted a considerable attention due to their low computational demand and high accuracy, represent modeling techniques based on system identification. These models are composed of a linear dynamic part interconnected with a nonlinear static element, and the unknown parameters of these two parts are generally determined by black-box identification approaches. However, another identification method known as “gray-box identification” can also be employed, which uses the existing information about the static or dynamic behavior of a system to achieve the unknown parameters of the Wiener model. In this study, an innovative approach for improving the Wiener model’s capability of predicting the dynamic behavior of nonlinear systems is presented with the assumption that the static behavior of the examined system is known. In the proposed model called the enhanced Wiener model (EWM), the parameters of the linear dynamic part are allowed to vary with the operating conditions; and thus, this model provides a higher flexibility in estimating the dynamic behavior of the examined system compared to the conventional Wiener models. The EWM consists of a static nonlinear block and a linear dynamic block with varying parameters. Since gas turbine engines are essentially nonlinear in both the steady and transient conditions, the modeling of a gas turbine can be a suitable case for evaluating the effectiveness of the proposed model. In this regard, in order to estimate the parameters of a two-shaft industrial gas turbine, five multi-input single-output (MISO) EWMs with a special structure are employed in which the parameters of the dynamic part of each EWM is determined by an adaptive network-based fuzzy inference system (ANFIS). In order to evaluate the performance of the proposed model, the EWM results are compared with the result obtained by common system identification approaches like Wiener, Hammerstein, Wiener–Hammerstein, nonlinear autoregressive exogenous (NARX), and ANFIS models. The simulation results reveal that the proposed EWM not only is more flexible and effective in predicting the dynamic behavior of the examined gas turbine than the block-structured models, but it also outperforms the NARX and ANFIS models in estimating the static behavior of the gas turbine.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference59 articles.

1. Nonlinear Model Predictive Control of a Laboratory Gas Turbine Installation;ASME J. Eng. Gas Turbines Power,1999

2. Real-Time Multi-Rate HIL Simulation Platform for Evaluation of a Jet Engine Fuel Controller;Simul. Modell. Pract. Theory,2011

3. Simplified Mathematical Representations of Heavy-Duty Gas Turbines;ASME J. Eng. Gas Turbines Power,1983

4. Frequency-Domain Identification of Gas Turbine Dynamics;IEEE Trans. Control Syst. Technol.,1998

5. Modeling and Simulation of a Gas Turbine Engine for Power Generation;ASME J. Eng. Gas Turbines Power,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3