Dynamics simulation of folding wing UAVs launched from a high-altitude balloon platform

Author:

Zhang Hangyue12ORCID,Yang Yanchu12,Cai Rong12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, PR China

2. University of Chinese Academy of Sciences, Beijing, PR China

Abstract

It is a new application of the high-altitude balloon system to launch multiple small folding wing unmanned aerial vehicles (UAVs). Based on the design of the launching system, we conduct numerical simulations of the ejection process from the balloon platform and the subsequent UAV wing deployment with trajectory leveling operation. We use the Kane method to establish the dynamic model of the balloon launching platform in the inertial coordinate system (ICS). By introducing the degree of freedom of UAV sliding along the sliding track, we realize the dynamic simulation of eight UAV launching processes and obtain the instantaneous separated states. The folding wing UAV first deploys its wings after ejection, which has the coupling characteristics between structural deformation and attitude adjustment. It is regarded as a multi-rigid body connecting structure composed of the fuselage and four wings. We establish the dynamic simulation model by the Kane method in the UAV body coordinate system (BCS). The Radau pseudo-spectral method is used to calculate the flight trajectory of each UAV. This paper is an engineering application research and can provide a simulation reference for the launching test of the balloon-borne folding wing UAV program.

Funder

China Academy of Sciences

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference38 articles.

1. The Future of Scientific Ballooning

2. Tim L, Jean-Charles L. High altitude UAV performance improvements using non-powered balloons. AIAA's 3rd Annual Aviation technology, integration, and operations (ATIO) Tech. 17–19 November 2003. Denver, CO. AIAA conference paper. Sunrise Valley Drive, Reston, VA.

3. Design and Predictions for High-Altitude (Low Reynolds Number) Aerodynamic Flight Experiment

4. Navigation, Guidance and Control For the CICADA Expendable Micro Air Vehicle

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3