Ascending Performance of Scientific Balloons with Buoyant Gas–Air Mixture Inflation for Designated Ceiling Height

Author:

Cao Shenghong12ORCID,Yang Yanchu12,Zhang Hangyue1,Zhao Rong1,Zhu Rongchen1,Zhang Donghui1,Song Lin1

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

This paper aims to investigate a new method that uses buoyant gas mixed with air to control the floating height of scientific balloons. Firstly, the static characteristics and thermophysical properties of mixed-gas balloons are analyzed. Subsequently, the inflation model and the thermal-dynamic coupled model are established. Furthermore, based on theoretical research, a GUI program is compiled to simulate the ascent of mixed-gas balloons. Finally, flight tests are conducted. As the balloon volume expands to the maximum, the vertical velocity begins to decay and eventually oscillates around 0 m/s, which is consistent with the simulation. In addition, there is a noticeable shift in which the balloon starts to float after climbing to the target altitude, and the difference values between the test and the simulation are less than 350 m. Moreover, the trajectory results are similar to the prediction, and the errors of the end position are less than 2.5 km in horizontal distance. Consequently, this paper provides guidance for balloon-designated ceiling height technology which can allow a single balloon system to be used for tests at multiple heights.

Funder

National Key R&D Program of China

Aerospace Information Research Institute, Chinese Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3