Near-surface particle image velocimetry measurements over a yawed slender delta wing

Author:

Karasu Ilyas1,Tumse Sergen2,Tasci Mehmat O.2,Sahin Besir2ORCID,Akilli Huseyin2

Affiliation:

1. Department of Aerospace Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey

2. Department of Mechanical Engineering, Cukurova University, Adana, Turkey

Abstract

In this study, extensive instantaneous velocity measurements were conducted within a flow area by stereo particle image velocimetry (SPIV) to investigate the influence of the yaw angle, β, on the vortical flow structure formed on a slender delta wing. This sideslip angle, β, in the yaw plane was varied from 4° up to 20° with an interval of 4° at two critical angles of attack, α = 25° and 35°, respectively. In order to reveal the influence of the yaw angle, β over the flow structure of the delta wing, time-averaged flow statistics, and instantaneous flow data obtained by the SPIV technique in the plan-view plane close to the suction surface of the delta wing were presented. It was observed that even a low yaw angle, for instance β = 8°, becomes to be effective on the flow characteristics of the delta wing, and this effect was augmented with increasing β. The influence of β is quite high on the vortical flow structure at α= 35° compared to the angle of attack of α = 25°. The flow structure that is symmetrical with respect to the centerline of the wing in the case of no yaw has disrupted with the existence β. Furthermore, the extent of the asymmetry enlarges with increasing β. The leading-edge vortex (LEV) on the windward side broken earlier and dominated the flow on the wing surface. It is concluded that this asymmetric flow structure can deteriorate the aerodynamic performance and cause other adverse effects such as unsteady loading.

Funder

The Scientific and Technological Research Council of Turkey

Çukurova University Scientific Research

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3