Unmanned air vehicle air data estimation using a matrix of pressure sensors: a comparison of neural networks and look-up tables

Author:

Samy I1,Postlethwaite I2,Gu D-W3

Affiliation:

1. Department of Engineering, University of Leicester, Leicester, UK

2. Northumbria University, Newcastle, UK

3. Control and Instrumentation Research Group, University of Leicester, Leicester, UK

Abstract

Flush airdata sensing (FADS) systems are cost- and weight- effective alternatives to current air data booms for measuring important air data parameters such as airspeed, angle of attack, sideslip, etc. Most applications consider large manned/unmanned air vehicles where the Pitot-static tube is located at the nose tip. However, traditional air data booms can be physically impractical for micro- (unmanned) air vehicles (MAVs) and, in this article, a FADS system mounted on the wing leading edge of a MAV flown at low speeds of Mach 0.07 (wind tunnel experiments under corresponding conditions) is designed. Moreover, two approaches for converting the FADS system pressure to meaningful air data are compared: a neural network (NN) approach and a look-up table (LUT). Results have shown that instrumentation weight and cost were reduced by 80 per cent and 97 per cent, respectively, in comparison to a traditional air data boom. Overall, the NN estimation accuracies were 0.51°, 0.44 lb/ft2, and 0.62 m/s and the LUT estimation accuracies 1.32°, 0.11 lb/ft2, and 0.88 m/s for the angle of attack, static pressure, and airspeed, respectively. It was also found that the LUT has faster execution times while the NN was in most cases more robust to sensor faults. However, while the LUT requires high memory usage, especially for higher dimensions, the NN can be executed in a few lines of code.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Reference12 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3