Affiliation:
1. Department of Engineering, University of Leicester, Leicester, UK
2. Northumbria University, Newcastle, UK
3. Control and Instrumentation Research Group, University of Leicester, Leicester, UK
Abstract
Flush airdata sensing (FADS) systems are cost- and weight- effective alternatives to current air data booms for measuring important air data parameters such as airspeed, angle of attack, sideslip, etc. Most applications consider large manned/unmanned air vehicles where the Pitot-static tube is located at the nose tip. However, traditional air data booms can be physically impractical for micro- (unmanned) air vehicles (MAVs) and, in this article, a FADS system mounted on the wing leading edge of a MAV flown at low speeds of Mach 0.07 (wind tunnel experiments under corresponding conditions) is designed. Moreover, two approaches for converting the FADS system pressure to meaningful air data are compared: a neural network (NN) approach and a look-up table (LUT). Results have shown that instrumentation weight and cost were reduced by 80 per cent and 97 per cent, respectively, in comparison to a traditional air data boom. Overall, the NN estimation accuracies were 0.51°, 0.44 lb/ft2, and 0.62 m/s and the LUT estimation accuracies 1.32°, 0.11 lb/ft2, and 0.88 m/s for the angle of attack, static pressure, and airspeed, respectively. It was also found that the LUT has faster execution times while the NN was in most cases more robust to sensor faults. However, while the LUT requires high memory usage, especially for higher dimensions, the NN can be executed in a few lines of code.
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献