Dynamic modeling and motion precision analysis of spacecraft manipulator with harmonic drive considering the alternate thermal field in orbit

Author:

Zhao Jieliang1,Wu Jianing1,Yan Shaoze1,Li Junlan1,Gu Yongxia2

Affiliation:

1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, P.R. China

2. School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing, P.R. China

Abstract

Nowadays, the harmonic drive is widely used as the reducer in the spacecraft manipulator, which may influence the dynamical properties of flexible spacecraft manipulator. The alternative thermal environment makes the spacecraft manipulator to experience periodic heating and cooling in the sunlight and shadow region of the Earth. The analysis of dynamic modeling and motion precision of flexible spacecraft manipulator with harmonic drive, considering the alternate thermal field in orbit is of significant importance for spacecraft manipulator designers in the early stage of design. The thermal load influences the motion precision, which reflects whether the mechanism is performed normally or not. In order to evaluate the loss of motion precision, this paper establishes the dynamical model of spacecraft manipulator with harmonic drive considering the alternate thermal field in orbit. A thermal analysis model of flexible spacecraft manipulator with harmonic drive is developed to characterize the thermal response of the whole spacecraft manipulator system subjected to space heat flux. Two different altitudes including low Earth orbit and geosynchronous Earth orbit are considered. Moreover, the transient temperature fields in different orbits of spacecraft manipulator and the effects of the thermal environment factors on the spacecraft manipulator are investigated. Simulation results reveal the evolution process of the transient temperature field of the spacecraft manipulator system. According to the results, the maximum temperature difference for space manipulator can lead to more severe precision loss compared with the minimum temperature difference. In addition, the vibration frequency of angular velocity error is determined by the maximum thermal heat flux. The proposed method is useful for forecasting the temperature distribution of the spacecraft manipulator system, and will provide meaningful information for performance enhancement of the aerospace facilities.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3