Attenuation of leakage flow using axially nonuniform tip clearance in high loading transonic compressor rotor

Author:

Cui Weiwei12ORCID,Liu Fusong1,Wang Xinglu1,Yao Fei1

Affiliation:

1. College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao, P.R. China

2. Key Laboratory of Civil Engineering Disaster Prevention and Mitigation of Shandong Province, Qingdao, P.R. China

Abstract

Several linearly nonuniform clearances have been designed to explore a novel strategy for attenuation of leakage flow in tip region of high loading transonic rotor and the effects of axially nonuniform clearance on detailed tip flow structure and stable operating range of rotor have been discussed as well. The results showed that the tip flow characteristic of rotor is affected mainly by the combined effects of two parts of low-velocity flow, which are produced by interaction of leakage flow with passage shock and boundary layer separation near suction side, respectively. However, the stall margin of rotor and isentropic efficiency near tip region is dominated significantly by the former part, and the local changes of size and shape of tip clearance have a large influence on it. Once the strength of leakage flow decreases due to clearance size variation, the boundary layer separation near suction side of blade tip worsens gradually and increases additional aerodynamic losses in passage. Both the mass flow rate and mixing losses of the tip leakage flow can be reduced due to a smaller size of clearance existing in front part of clearance of rotor with a linearly divergent clearance shape, and the area of low-velocity region near pressure side has reduced accordingly. By contrast, a linearly convergent shape of tip clearance can increase both the area of low-velocity region and the mixing loss of leakage flow as a result of a larger size of clearance existing over the front part of blade tip of rotor. Eventually, a divergent shape of tip clearance with a reasonable minimum size near leading edge of blade tip is preferred for transonic rotor in consideration of the benefit in stall margin improvement with nearly no penalty in efficiency.

Funder

The General Program of Natural Science Foundation of Shandong Province

The General Program of National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-uniform flow characteristics and rotating instability of a transonic high-pressure compressor rotor with cavity bleed;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3