Affiliation:
1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, China
Abstract
In order to obtain the effect of endwall secondary flow on the swirling film cooling, a geometric model of cascade is established to research the endwall swirling film cooling and swirling flow induced by prismatic jet impingement configurations. Numerical simulation is applied to investigate three jet flow configurations on the endwall film cooling performance at the compound angles of film hole γ = 0° and 30° and blowing ratios M = 0.5–2.0. The influence of complex vortex structures near endwall for jet flow is analyzed in detail; the strong transverse cross flow near the endwall is the main reason affecting the film cooling effectiveness. The variation laws of endwall film cooling effectiveness with the compound angle of film hole, jet flow configuration, and the blowing ratio are obtained. As the blowing ratio increases, the spanwise average film cooling effectiveness increases first and then decreases. While the blowing ratio is M =1.0, the endwall film cooling effectiveness is the best. Increasing the compound angle of the film hole leads to a decrease in the endwall cooling effectiveness. The spanwise average cooling effectiveness of γ = 30° decreases by 35% compared to the γ = 0°.
Funder
National Natural Science Foundation of China
State Key Laboratory of Aerodynamics
Natural Science Foundation of Heilongjiang Province of China-Outstanding Youth Foundation
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献