Affiliation:
1. College of Power and Energy Engineering, Harbin Engineering University, Harbin, China
Abstract
In this paper, a hexagonal prism inlet chamber is used to form a swirling flow for the film cooling, and three kinds of compound angle of film hole ( γ = 10°, 20°, 30°) with clockwise swirling or counterclockwise swirling are used for numerical simulation studies. The influence of different compound angles of film hole and the swirling directions for the film cooling effectiveness are obtained. The results show that the film cooling effectiveness and spanwise cooling coverage range of the clockwise swirling or counterclockwise swirling flow both are low when the compound angle of film hole is 10°. With the increasing compound angle of film hole, the kidney shaped vortex of film hole exit gradually weakens until it disappears, which reduces the entrainment effect by the coolant jet. So that the spanwise coverage range of two swirling modes is obviously improved. When the compound angle of film hole is 30° compared to 10°, the average spanwise film cooling effectiveness of clockwise swirling and counterclockwise swirling are increased by about 133.75 and 212.6%, respectively. The average spanwise film cooling effectiveness on the downstream of film hole for counterclockwise swirling is increased by about 140% compared with clockwise swirling.
Funder
Natural Science Foundation of Heilongjiang Province of China
National Natural Science Foundation of China
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献