Aero-engine on-board model based on big Quick Access Recorder data

Author:

Ren Li-Hua1,Ye Zhi-Feng1,Zhu Ye2,Xu Zhan-Yan2,Zhao Yong-Ping1ORCID

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, China

2. Software Department of Aero Engine Control System Institute, China

Abstract

With the development of the Full Authority Digital Engine Controller (FADEC) technology, the aero-engine on-board model is widely used in Engine Health Management (EHM) and control. Due to the FADEC’s limited computational capability and storage capacity, the model should not be very intricate; consequently, the interpolation model is widely utilized. Although the interpolation model’s low precision precludes further development of on-board models for EHM and control. To address the trade-off between precision and complexity, a novel on-board modeling method is proposed based on the Nonlinear Autoregressive with Exogenous Inputs Backpropagation neural network (NARX-BPNN) trained using the mini-batch Levenberg–Marquardt (LM) algorithm on large Quick Access Recorder (QAR) data. The NARX model’s features and time delay are chosen by referring to the line interpolation model, which gives interpretability for feature selection. The combination of a shallow neural network and big data training can guarantee the on-board model’s real-time and storage requirements, as well as its generalizability. The mini-batch LM method can avoid both the local optimum problem in the shallow neural network and the storage difficulty associated with massive data while still achieving a rapid convergence rate due to the LM algorithm’s global view. The NARX-BPNN models are compared to an existing line interpolation model using 100 different aero-engines' QAR data. The results reveal that accuracy may be increased by approximately 30% while maintaining superior dynamic performance and anti-noise capacity compared to the line interpolation approach.

Funder

Fundamental Research Funds for the Central Universities and National Science and Technology Major Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risk assessment method for controlled flight into terrain of airlines based on QAR data;Aircraft Engineering and Aerospace Technology;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3