Nonlinear static analysis-based thrust for solar sail

Author:

Liu Jiafu1,Cui Naigang2,Shen Fan2,Rong Siyuan2

Affiliation:

1. Shenyang Aerospace University, Shenyang, China

2. Harbin Institute of Technology, Harbin, China

Abstract

An accurate thrust model is extremely important for the navigation and space mission of solar sails. The thrust is deeply affected by the deformation of the highly flexible structure. Thus, in this paper, the exact thrust models for two-point and infinite-point-connected sails are presented by calculating the static deformations for the sail support beam structure with geometrical nonlinearity based on the assumption that the deformation of the sail film coincides with the support beam. And the film is merely regarded as the structure that transfers the solar radiation pressure force to the support beam. The nonlinear finite element model of the support beam with the Von-Karman’s nonlinear strain–displacement relationships is obtained. Then the Newton iteration method is used to calculate the large deformation of the sail structure. The thrust-modification methods are proposed for the two-connected sail. The deformation of the two-point-connected sail is larger than the infinite-point-connected sail, and the thrust loss of the two-point-connected sail is larger than the infinite-point-connected sail by nonlinear static calculations. Some suggestions are given based on the calculation results and relevant analysis. The thrust model should be verified and modified by in-flight data in the future.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3