Vibration Prediction of Space Large-Scale Membranes Using Energy Flow Analysis

Author:

Wang Kun,Zhang Qi,Liu Jiafu

Abstract

In this work, vibration prediction of space large-scale membranes from the energy point of view is investigated. Based on the Green kernel of vibrating membranes, a new analytical representation of energy response of infinite membranes is derived. Averaged energy is used as the main variable so that the response fluctuation can be smoothed. Then membranes of various shapes can be taken into account by introducing the mean free path into the formulation to describe travel distances of energy waves. The energy response of finite membranes is obtained with the superposition of energy waves subsequently. Considering uncertainties usually becomes significant in large-scale structures, the formulation expressed with random variables is obtained for membranes with uncertain properties. The mathematical expectation and variance of energy response are derived subsequently. And the confidence interval of random response is obtained. Finally, numerical simulations are performed to validate the proposed formulations and characteristics of the random energy responses are analyzed by taking a space large-scale membrane structure as a model. The developed formulations make the analysis of membranes with uncertainties more convenient than Finite Element Method (FEM) since they are expressed in analytical forms. Compared with existing formulations of energy flow derived from deterministic travel distances of waves that only apply to regular shapes of structures, the proposed formulations are suitable for membranes of various shapes. This work provides an alternative analytical approach to vibration prediction for space large-scale membranes with uncertainties. And the approach is thought helpful for the vibration analysis of other two-dimensional structures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3