An improved dynamic load-strength interference model for the reliability analysis of aero-engine rotor blade system

Author:

Zhao Bingfeng12,Xie Liyang12ORCID,Zhang Yu3ORCID,Ren Jungang1,Bai Xin4,Qin Bo1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, P. R. China

2. Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education, Shenyang, P. R. China

3. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang, P. R. China

4. Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, P. R. China

Abstract

As the power source of an aircraft, aero-engine tends to meet many rigorous requirements for high thrust-weight ratio and reliability with the continuous improvement of aero-engine performance. In this paper, based on the order statistics and stochastic process theory, an improved dynamic load-strength interference (LSI) model was proposed for the reliability analysis of aero-engine rotor blade system, with strength degradation and catastrophic failure involved. In presented model, the “unconventional active” characteristic of rotor blade system, changeable functioning relationships and system-component configurations, was fully considered, which is necessary for both theoretical analysis and engineering application. In addition, to reduce the computation cost, a simplified form of the improved LSI model was also built for convenience of engineering application. To verify the effectiveness of the improved model, reliability of turbojet 7 engine rotor blade system was calculated by the improved LSI model based on the results of static finite element analysis. Compared with the traditional LSI model, the result showed that there were significant differences between the calculation results of the two models, in which the improved model was more appropriate to the practical condition.

Funder

Research on reliability theory and method of total fatigue life for large complex mechanical structures

Multi-zone mechanical behavior and life prediction of mechanical mismatched FSW joints

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3