Reliability analysis of multi-site damage with failure dependency of the turbine based on flow-thermal-solid coupling analysis and the Monte Carlo validated simulations

Author:

Qian WenxueORCID,Zeng Xianhai,Huang Shuanghui,Yin Xiaowei

Abstract

The harsh environmental loads may lead to strength failure in the turbine in an aero-engine. To accurately assess the strength reliability of the turbine under multiple loads, the stress distributions of 41 danger sites of a turbine under thermal, centrifugal, and pneumatic loads were determined by the flow-thermal-solid coupling analysis using ANSYS. Second, based on the flow-thermal-solid coupling analysis and response surface method, the probabilistic analysis model of stress at the danger site was established. And the probabilistic distribution of stress was determined by sampling and hypothesis testing. Finally, the reliability model of the turbine with multi-site damage and failure dependency was established, by which a reliability of 0.99802 was calculated. And the actual reliability of the turbine was 0.99626 determined by the Monte Carlo simulations, which verified the model in precision. The results indicated that the reliability model has a high efficiency and higher precision than the traditional reliability model with failure independence.

Publisher

Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne

Subject

Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3