Adaptive compliant controller for space robot stabilization in post-capture phase

Author:

Xia Pengcheng12,Luo Jianjun1ORCID,Wang Mingming12ORCID

Affiliation:

1. Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China

2. School of Astronautics, National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi’an, China

Abstract

Safety and reliability are the primary prerequisites of space robotic manipulation. Due to the inaccurate inertial parameters of the tumbling target, tracking the desired trajectory directly will lead to the build up of large contact force and torque and damage the grasping point. The measurement noise in the contact wrenches will disturb the application of compliant stabilization strategy, and lead to mission failure. In order to coordinate the desired motion and contact, a compliant stabilization is required for realistic application. However, the measurement noise in the measured contact will disturb the application of compliant control scheme. According to these facts, herein, an adaptive compliant stabilization control scheme is proposed for a safe and reliable stabilization process. With the reference of the unsafe desired motion, a safe admittance motion is generated with an adaptive stiffness virtual spring. In consideration of the parameter selection and the presence of the contact wrenches measurement noise, a neural network-based coordinated adaptive impedance tracking controller is designed to track the safe motion and consume the transmitted energy from the tumbling target at the same time. With the benefit of the combination of the admittance motion and the coordinated adaptive impedance tracking controller, interactions at the grasping point can be controlled and the target can be stabilized under the influence of the measurement noise in the contact wrenches. Furthermore, safety and reliability of the proposed control scheme are validated via digital simulations.

Funder

National Natural Science Foundation of China

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3