Aerodynamic design optimization of a hypersonic rocket sled deflector using the free-form deformation technique

Author:

Dang Tianjiao1,Li Bingfei2,Hu Dike3,Sun Yachuan1,Liu Zhen1ORCID

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, P.R. China

2. Xi’an Institute of Space Radio Technology, Xi’an, Shaanxi, P.R. China

3. Shanghai Institute of Aerospace System Engineering, Shanghai, P.R. China

Abstract

An aerodynamic design optimization of a hypersonic rocket sled deflector is presented using the free-form deformation (FFD) technique. The objective is to optimize the aerodynamic shape of the hypersonic rocket sled deflector to increase its negative lift and enhance the motion stability of the rocket sled. The FFD technique is selected as the aerodynamic shape parameterization method, and the continuous adjoint method based on the gradient method is used to search the optimization in the geometric shape parameter space; the computational fluid dynamics method for a hypersonic rocket sled is employed. An automatic design optimization method for the deflector is carried out based on the aerodynamic requirements of the rocket sled. The optimization results show that the optimized deflector meets the design requirement of increasing the negative lift under the constraint of drag. By improving the pressure distribution on the surface of the deflector, the negative lift is increased by 7.39%, which confirms the effectiveness of the proposed method.

Funder

K. C. Wong Education Foundation

Project B18040

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fatigue Life Analysis and Evaluation of Multi-Pipe Water Brakes;Lecture Notes in Mechanical Engineering;2023-12-19

2. An approach of Proper Orthogonal Decomposition-aided Free-form Deformation with application in compressor blade design;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2022-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3