An approach of Proper Orthogonal Decomposition-aided Free-form Deformation with application in compressor blade design

Author:

Wang Shuyue1ORCID,Wang Kaidi1,Qin Sheng1ORCID,Yuan Zizhao1,Sun Gang1ORCID,Li Zhong1

Affiliation:

1. Dept of Aeronautics and Astronautics, Fudan University, China

Abstract

Compressor blade design influences aero-engine performance mainly through its total pressure ratio and efficiency. As a volume-based geometric parameterization, Free-form Deformation (FFD) brings three-dimensionality that is essential to blade design. However, the manipulation of control points with respect to simple numeric parametric perturbation renders the use of design space low-efficient. Therefore, an improved FFD with ‘wiser’ control point lay-out is expected to identify those more important design variables. This paper proposes novel design variables that are assigned to grouping of control points’ displacement in FFD lay-out. In short, the approach is realized as: (i) establish a library of sufficient blade shape samples; (ii) filter the database with geometric constraints; (iii) extract dominant modes via (POD) Proper Orthogonal Decomposition; (iv) construct new design variables and apply them in optimization. With geometric constraint filtering, problem-oriented information is injected. With POD, the dominance of new selected geometric parameters in problem description is assured. Perfunctory details of displacement data of each control point in the lay-out can be replaced by grouped data as new design variable candidates. As a proof-of-concept study of the new approach, compressor blade Rotor 37 is selected to be the good platform of testing the feasibility of POD-aided FFD as a global and flexible yet economic geometric parameterization. Result demonstrates the feasibility of proposed POD-aided FFD approach that helps conduct an optimization involving displacement of 6 × 4 × 3 control points with as few as five new design variables, while still being capable of bringing optimization effect in three test cases.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3