Tensile fatigue life prediction of adhesively bonded structures based on CZM technique and a modified degradation approach

Author:

Akhavan-Safar A1ORCID,Monteiro J2,Carbas R1ORCID,Marques E1ORCID,Goyal R3ORCID,da Silva LFM2ORCID

Affiliation:

1. Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Porto, Portugal

2. Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal

3. Deere & Company, Asia Technology and Innovation Center, Pune, India

Abstract

Due to their inherent advantages, the use of adhesive joints is widely increasing in advanced industrial sectors such as automotive and aircraft structures, where the lightweight components play a significant role in the efficiency of the products. These structural adhesively bonded connections mostly experience cyclic stress conditions during their service life. One of the most critical fatigue loading conditions for adhesive joints is the tensile cyclic loading. To design against tensile fatigue conditions recently a cohesive zone modelling (CZM) technique combined with a degradation approach was proposed in the literature. However, to apply this degradation method on cohesive elements, the total fatigue life of the joints should be known before the analysis. The aim of the current work is to improve this degradation approach to calculate the fatigue life automatically. To achieve this, a combination of Paris law and degradation model were considered in a numerical procedure. Using the Paris law and the experimental results obtained out of the fatigue crack propagation tests of DCB (double cantilever beam) specimens, the tensile fatigue life of each integration point (IP) during the analysis is estimated automatically. The model was validated and calibrated by experimental data.

Funder

John Deere

INFINEON

Kobe Steel

Henkel

SAFRAN

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3