Predicting Progressive Delamination of Stiffened Fibre-Composite Panel and Repaired Sandwich Panel by Decohesion Models

Author:

Chen Jiye1

Affiliation:

1. Engineering Material Group, School of Engineering Science University of Southampton, Southampton SO17 1BJ, UK,

Abstract

An approach employing decohesive models with mixed damaged scale and using total fracture energy was developed to simulate the delamination process of a stiffened fibre-composite panel and a repaired composite sandwich panel. Two decohesive material models - a bilinear interfacial decohesive function and the other a cubic polynomial interfacial decohesive function - were developed by using total fracture energy Gc, and based on using interface elements. In comparison with traditional numerical methods in fracture mechanics, this approach automatically predicts the failure load, crack path and the residual stiffness in the fracture process. Applications in this article are delamination analysis of a stiffened fibre-composite panel under four-point bending conditions and a repaired composite sandwich panel under four-point bending test. Comparisons between modeling predictions and experimental observations show that these decohesive models perform well. This article compares the problem of numerical convergent failure between two decohesive material models.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3