Affiliation:
1. Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
Abstract
Considering the supersonic inlet model with normal shock position feedback, the integrated control method of inlet and turbofan engine is studied. The integrated model includes the supersonic inlet model and the component level model of engine. Combining the relationship between the normal shock position and the total pressure recovery coefficient, the supersonic inlet and engine model is constructed. On the basis of this model, the normal shock position closed-loop control simulation is carried out, which shows that the normal shock position matching point could be stabilized near the optimal value while restraining the inlet stream disturbance. Furthermore, based on the H∞ control algorithm, an inlet and engine integrated control is designed to control the installation thrust and turbine pressure ratio with fuel, nozzle throat area, and normal shock position as control variables. The simulation results show that the response time of the integrated control is faster than the independent control. The integrated control has stronger ability to restrain the atmospheric disturbance, which could ensure the stable and reliable operation of the propulsion system.
Funder
Central Universities under Grant
National Natural Science Foundation of China
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献