Study on integrated control for supersonic inlet and turbofan engine model

Author:

Chen Haoying1ORCID,Zhang Haibo1ORCID,Du Yao1,Zheng Qiangang1ORCID

Affiliation:

1. Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

Abstract

Considering the supersonic inlet model with normal shock position feedback, the integrated control method of inlet and turbofan engine is studied. The integrated model includes the supersonic inlet model and the component level model of engine. Combining the relationship between the normal shock position and the total pressure recovery coefficient, the supersonic inlet and engine model is constructed. On the basis of this model, the normal shock position closed-loop control simulation is carried out, which shows that the normal shock position matching point could be stabilized near the optimal value while restraining the inlet stream disturbance. Furthermore, based on the H control algorithm, an inlet and engine integrated control is designed to control the installation thrust and turbine pressure ratio with fuel, nozzle throat area, and normal shock position as control variables. The simulation results show that the response time of the integrated control is faster than the independent control. The integrated control has stronger ability to restrain the atmospheric disturbance, which could ensure the stable and reliable operation of the propulsion system.

Funder

Central Universities under Grant

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on an inlet-engine hybrid integrated modelling method with pressure dynamic self-tuning;Aerospace Science and Technology;2024-11

2. Conceptual design and integration of a propulsion system for a supersonic transport aircraft;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2021-05-06

3. Control-oriented quasi-one dimensional modeling method for scramjet;International Journal of Turbo & Jet-Engines;2021-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3