Effect of rocket exhaust of canisterized missile on adjoining launching system

Author:

Chandra Murty MSR1,Sinha PK1,Chakraborty D1

Affiliation:

1. Directorate of Computational Dynamics, Defence Research and Development Laboratory, Hyderabad, India

Abstract

Transient numerical simulations are carried out to study missile motion in a vertical launch system and to estimate the effect of missile exhaust in the adjoining launch structure. Three-dimensional Navier–Stokes equations along with k–ɛ turbulence model and species transport equations are solved using commercial computational fluid dynamics software. Dynamic grid movement is adopted and one degree of freedom trajectory equations are integrated with the computational fluid dynamic solver to obtain the instantaneous position of the missile. Multi-zone grid generation approach with sliding interface method through layering technique is adopted to address the changing boundary problem. The computational methodology is applied to study the missile motion in a scale-down test configuration as well as in the flight condition. The computations capture all essential flow features of test and flight conditions in active cell as well as in adjacent cells. Parametric studies are conducted to study the effect geometrical features and measurement uncertainty in the input data. Computed pressures in the adjacent cells in the launch system match better (∼12%) with the experimental and flight results compared to distant cells.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A STUDY ON CHARACTERISTICS OF VLS GAS MANAGEMENT SYSTEM USING CFD;Journal of computational fluids engineering;2024-06-30

2. Visual dynamics simulation for adapters separation of missile launching;AIP Advances;2021-02-01

3. Transient influence of water injection on the flow field of a hot launch in a W-shaped silo;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2019-09-25

4. Study on the Deformation and Stress Analysis of the Sponge/Rubber Adapter;Mathematical Problems in Engineering;2018-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3