Cuckoo search-based method for trajectory planning of quadrotor in an urban environment

Author:

Hu Hanjie12,Wu Yu3ORCID,Xu Jinfa1,Sun Qingyun2

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Chongqing General Aviation Industry Group Co., Ltd, Chongqing, China

3. College of Aerospace Engineering, Chongqing University, Chongqing, China

Abstract

Express by micro aerial vehicle (MAV) becomes more and more popular because it can avoid the influence of terrain and save more space for taking-off and landing of aircraft. At present, quadrotor is often used in the express industry due to its flexibility and easy operation, and the flight trajectory plays an important role in the efficiency and safety level of express service. In this paper, the trajectory planning problem is studied for quadrotor delivering goods in urban environment with the purpose of avoiding the heavy ground traffic, and a cuckoo search (CS)-based trajectory planning method is proposed to solve the problem. First, a conceptual model containing all the key elements of the delivery task is developed, which presents a general idea of solving the problem. Some characteristics of the urban environment and the delivery task, such as the wind field, dense buildings and inclination of shipped goods, are taken into account in the trajectory planning model. The goal of the delivery task is to make the goods reach the destination accurately. When designing the CS-based trajectory planning algorithm, the basics of CS algorithm are explained, and then it is integrated into the trajectory planning problem. Comparative experiments are carried out to investigate the superiority of the proposed method, and the influences of parameters in CS algorithm are also discussed to conclude its performance in trajectory planning problem.

Funder

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3