A hybrid methodology for knowledge organization and application of Chinese civil aviation regulations from mission safety support perspective

Author:

Niu Haotian1ORCID,Ma Cunbao1,She Zhiyu1,Han Pei2,Yuan Jiuxing3

Affiliation:

1. School of Civil Aviation, Northwestern Polytechnical University, Xi’an, China

2. Department of Data link, 20th Institute, China Electronics Technology Corporation, Xi’an, China

3. Department of Overall Design, Xi’an Institute of Electromechanical Information Technology, Xi’an, China

Abstract

Safety is one of the most important issues in aviation. Aviation regulations provide significant information pertinent to the safety design and operation of aircraft; however, this information has not been effectively used. It is difficult to precisely identify and obtain the necessary information due to massive and unstructured provisions. In this study, a hybrid methodology is proposed to realize knowledge system construction using Chinese Civil Aviation Regulations as the object of study. To realize structured knowledge organization and intelligent knowledge application for aviation regulations, the hybrid methodology integrates a semantic cohesion model, a knowledge recognition model, a knowledge organization model, and a knowledge application model. A knowledge system of aviation regulations is built using the hybrid methodology comprising all knowledge necessary for aviation safety. The system provides intelligent knowledge support for the safety analysis of aircraft from the perspective of control system, including the accurate positioning of control elements and thorough acquisition of control conditions. Experiments were conducted to confirm the accuracy of the proposed method, and the 56,853 knowledge triples contained in the knowledge system supported its reliability. A few examples of knowledge retrieval are provided, focusing on the interaction processes of socio-technical elements during aircraft missions. It takes only a few seconds to acquire the knowledge required for safety analysis. The examples show how the hybrid methodology and knowledge system can be utilized to increase the efficiency of safety analysis for socio-technical systems while advancing intelligent knowledge applications in the aviation domain.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3