A decentralized method for collision detection and avoidance applied to civil aircraft

Author:

Niu Haotian1ORCID,Ma Cunbao1,Han Pei2

Affiliation:

1. School of Aeronautics, Northwestern Polytechnical University, Xi’an, China

2. Communications Division, 20th Institute, China Electronics Technology Group Corporation, Xi’an, China

Abstract

With the increasing density level of airspace, the flawed logic of resolution in air conflict has become a potential hazard to keep flight safety for civil aviation. A powerful decision-support system is needed to identify and resolve potential conflicts on planned trajectory in advance. Existing studies on this subject mainly focus on the centralized means, but seldom consider the decentralized approaches. In this paper, a decentralized method is proposed so that each aircraft can generate the collision-free Reference Business Trajectory (RBT) autonomously, and resolve potential conflicts while conforming to the unified rules. Firstly, a Synchronous Discrete-Time-Discrete-Space trajectory modeling is developed to divide the continuous planned trajectory into multiple trajectory segments according to motion state. Thus, the collision can be accurately located at one certain risky segment, and the corresponding collision time can be acquired precisely. Through a weight analysis of collision time, the critical trajectory segment is determined to implement the task of conflict resolution. Then, the Optimal Reciprocal Collision Avoidance (ORCA) algorithm is adopted and extended to determine the collision-free maneuver with the consideration of direction selectivity. At last, the Trajectory Change Points (TCPs) are achieved by the quadratic program for each aircraft. The proposed method can help aircraft generate collision-free RBT in decentralized way successfully. Several simulations are conducted to confirm the validity and efficiency of the proposed approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3