A novel method for spacecraft electrical fault detection based on FCM clustering and WPSVM classification with PCA feature extraction

Author:

Li Ke1,Wu Yalei1,Song Shimin2,sun Yi2,Wang Jun1,Li Yang1

Affiliation:

1. Beihang University, Beijing, China

2. China Academy of Space Technology, Beijing, China

Abstract

The measurement of spacecraft electrical characteristics and multi-label classification issues are generally including a large amount of unlabeled test data processing, high-dimensional feature redundancy, time-consumed computation, and identification of slow rate. In this paper, a fuzzy c-means offline (FCM) clustering algorithm and the approximate weighted proximal support vector machine (WPSVM) online recognition approach have been proposed to reduce the feature size and improve the speed of classification of electrical characteristics in the spacecraft. In addition, the main component analysis for the complex signals based on the principal component feature extraction is used for the feature selection process. The data capture contribution approach by using thresholds is furthermore applied to resolve the selection problem of the principal component analysis (PCA), which effectively guarantees the validity and consistency of the data. Experimental results indicate that the proposed approach in this paper can obtain better fault diagnosis results of the spacecraft electrical characteristics’ data, improve the accuracy of identification, and shorten the computing time with high efficiency.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3