Observer-Based Fault Diagnosis of Satellite Systems Subject to Time-Varying Thruster Faults

Author:

Chen Wen1,Saif Mehrdad1

Affiliation:

1. School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada

Abstract

This paper presents a novel fault diagnosis approach in satellite systems for identifying time-varying thruster faults. To overcome the difficulty in identifying time-varying thruster faults by adaptive observers, an iterative learning observer (ILO) is designed to achieve estimation of time-varying faults. The proposed ILO-based fault-identification strategy uses a learning mechanism to perform fault estimation instead of using integrators that are commonly used in classical adaptive observers. The stability of estimation-error dynamics is established and proved. An illustrative example clearly shows that time-varying thruster faults can be accurately identified.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference17 articles.

1. Analytical Redundancy Based Fault Detection of Gyroscopes in Spacecraft Applications;Venkateswaran;Acta Astronaut.

2. Fault-Tolerant Control of Spacecraft in the Presence of Sensor Bias;Boskovic

3. A Model-Based Thruster Leakage Monitor for the Cassini Spacecraft;Lee

4. Fault-Tolerant Control in Dynamic Systems: Application to a Winding Machine;Noura;IEEE Control Syst. Mag.

5. A Variable Structure Adaptive Observer Approach for Actuator Fault Detection and Diagnosis in Uncertain Nonlinear Systems;Chen

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3