A novel surrogate-based aerodynamic optimization method using field approximate model

Author:

Wang Wenjie1,Wu Zeping1,Wang Donghui1ORCID,Zhang Weihua1

Affiliation:

1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, Hunan, PR China

Abstract

An efficient surrogate-based aerodynamic shape optimization method is developed to improve the optimization efficiency. In this method, the field approximate model is presented firstly to predict the flow field parameters of interest for specific aerodynamic optimization problems with respect to the design variables and sequentially updated. The differential evolution is used to locate the optimum of field approximate model coupled with the analytical post-processing to calculate the objective and constraints for aerodynamic optimization. This optimal point is calculated by time-consuming computational fluid dynamics simulation and the result is added to the sampling set to update the sampling points and field approximate model. The proposed method is compared with conventional sequential approximate optimization and shows great advantages in accuracy and efficiency. Two shape optimization test cases are provided to verify the efficacy and efficiency of the proposed method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3