Investigation on the flow-control strategy for an aggressive turbine transition ducts

Author:

Liu Jun1ORCID,Liu Hongrui1ORCID,Liu Guang1ORCID,Du Qiang1,Wang Pei1,Chang Sheng12

Affiliation:

1. Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

2. School of Engineering and Science, University of Chinese Academy of Sciences, Beijing, China

Abstract

After being studied for years, aggressive intermediate turbine duct is being attempted to be applied in turbine design to further improve the engine-performance. With such design, the shaft could be shortened effectively. However, under the influence of the more distorted coming-flow and stronger pressure-gradient in a real engine, the flow field would be more complicated definitely. Besides that, the upstream-rotor tip-leakage flow is a key loss-source by inducing separation. Flow-control strategies are necessary in this situation. In this paper, the flow field in an aggressive duct has been analyzed to declare the source of separation primarily. Then wide-chord blade design concept has been adopted as a control strategy firstly to realize the purpose of improving the areo-performance. After being verified, numerical method has been used in this study. Under the same aero-condition, the prototype and the modified turbine are analyzed. With this novel flow-control strategy, separation has been improved, even diminished. However, the flow structures within the blade passage are altered correspondingly. An instrumental conclusion is that the pressure loss could be decreased successfully by designing the wide-chord blade specially.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3