Development and evolution mechanism of streamwise vortex in an inward-turning inlet

Author:

Wang Ziao1ORCID,Xin Xuanan1,Chen Ruoyu2,Huang Renzhe1,Kong Chen1,Chang Juntao1ORCID

Affiliation:

1. Harbin Institute of Technology, Harbin, China

2. Landspace Technology Corporation Ltd, Beijing, China

Abstract

The three-dimensional flows in an inward-turning inlet were numerically investigated at different incoming flow conditions. When the incoming flow conditions change, the shock angle and the shock interaction form of the external compression wave change, and the development of the near-wall low-energy fluid and the streamwise vortex is also affected. The impingement of the shock wave leads to a sharp increase in the vorticity of the low kinetic energy fluid. Under the pressure gradient caused by the shock wave, the high-vorticity fluid migrates from the cowl to the ramp and entrains the mainstream fluid to form a streamwise vortex, for which the velocity gradient ( ∂v/ ∂y + ∂w/ ∂z) along the vortex axis can accurately determine the rotation direction and the Hopf bifurcation position. By considering high Reynolds number flows, the pressure gradient along the vortex axis is developed to estimate the simplified dilation term (velocity gradient) due to its ease of measurement. However, the pressure gradient ( ∂p/ ∂x) along the vortex axis can lead to bias when evaluating the cross-flow state of the streamwise vortex, with the shock wave structure and high-vorticity fluid leading to under- and overestimation, respectively. This study provides a theoretical basis for an accurate determination of the flow state of a streamwise vortex in an inward-turning inlet and thus lays the foundation for effective vortex control.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3