Affiliation:
1. School of Mechanical Engineering, Shiraz University, Shiraz 71936-16548, Iran
Abstract
In the present work, the physics of a three-dimensional shock train in a convergent-divergent nozzle is numerically investigated. In this regards, the Ansys-Fluent Software with Algebraic Wall-Modeled Large-Eddy Simulation (WMLES) is used. To estimate precision and errors accumulation we used the Smirinov’s method; fine flow structures are obtained via Laplacian of density called shadowgraph and the shock parameter is defined as multiplication of flow Mach number by the normalized pressure gradient, in which shock wave structures are visible distinctly. The results are compared with the experimental data of Weiss et al. [Experiments in Fluids 49(2) (2010) 355–365], in the same conditions including geometry, boundary conditions, etc. The results show that there is good agreement with experimental trends concerning wall pressure and centerline Mach number profiles. Therefore, the focus of the present study is an assessment of various flow control methods to change the shock structures. Consequently, we investigated the effects of passive (bump and cavity) and active (suction and blowing) control methods on the starting point of shock, shock strength, minimum pressure, maximum flow Mach number, etc. All CFD investigations are carried out by High Performance Computing Center (HPCC).
Publisher
World Scientific Pub Co Pte Lt
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献