Three-Dimensional Passive and Active Control Methods of Shock Wave Train Physics in a Duct

Author:

Kamali Reza1,Mousavi Seyed Mahmood1,Khojasteh Danial1

Affiliation:

1. School of Mechanical Engineering, Shiraz University, Shiraz 71936-16548, Iran

Abstract

In the present work, the physics of a three-dimensional shock train in a convergent-divergent nozzle is numerically investigated. In this regards, the Ansys-Fluent Software with Algebraic Wall-Modeled Large-Eddy Simulation (WMLES) is used. To estimate precision and errors accumulation we used the Smirinov’s method; fine flow structures are obtained via Laplacian of density called shadowgraph and the shock parameter is defined as multiplication of flow Mach number by the normalized pressure gradient, in which shock wave structures are visible distinctly. The results are compared with the experimental data of Weiss et al. [Experiments in Fluids 49(2) (2010) 355–365], in the same conditions including geometry, boundary conditions, etc. The results show that there is good agreement with experimental trends concerning wall pressure and centerline Mach number profiles. Therefore, the focus of the present study is an assessment of various flow control methods to change the shock structures. Consequently, we investigated the effects of passive (bump and cavity) and active (suction and blowing) control methods on the starting point of shock, shock strength, minimum pressure, maximum flow Mach number, etc. All CFD investigations are carried out by High Performance Computing Center (HPCC).

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3