Multiobjective Calibration of Disease Simulation Models Using Gaussian Processes

Author:

Sai Aditya1,Vivas-Valencia Carolina1,Imperiale Thomas F.234,Kong Nan1ORCID

Affiliation:

1. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA

2. Indiana University School of Medicine, Indiana University, Indianapolis, IN, USA

3. Richard A. Roudebush VA Medical Center, Indianapolis, IN, USA

4. Regenstrief Institute, Indianapolis, IN, USA

Abstract

Background. Developing efficient procedures of model calibration, which entails matching model predictions to observed outcomes, has gained increasing attention. With faithful but complex simulation models established for cancer diseases, key parameters of cancer natural history can be investigated for possible fits, which can subsequently inform optimal prevention and treatment strategies. When multiple calibration targets exist, one approach to identifying optimal parameters relies on the Pareto frontier. However, computational burdens associated with higher-dimensional parameter spaces require a metamodeling approach. The goal of this work is to explore multiobjective calibration using Gaussian process regression (GPR) with an eye toward how multiple goodness-of-fit (GOF) criteria identify Pareto-optimal parameters. Methods. We applied GPR, a metamodeling technique, to estimate colorectal cancer (CRC)–related prevalence rates simulated from a microsimulation model of CRC natural history, known as the Colon Modeling Open Source Tool (CMOST). We embedded GPR metamodels within a Pareto optimization framework to identify best-fitting parameters for age-, adenoma-, and adenoma staging–dependent transition probabilities and risk factors. The Pareto frontier approach is demonstrated using genetic algorithms with both sum-of-squared errors (SSEs) and Poisson deviance GOF criteria. Results. The GPR metamodel is able to approximate CMOST outputs accurately on 2 separate parameter sets. Both GOF criteria are able to identify different best-fitting parameter sets on the Pareto frontier. The SSE criterion emphasizes the importance of age-specific adenoma progression parameters, while the Poisson criterion prioritizes adenoma-specific progression parameters. Conclusion. Different GOF criteria assert different components of the CRC natural history. The combination of multiobjective optimization and nonparametric regression, along with diverse GOF criteria, can advance the calibration process by identifying optimal regions of the underlying parameter landscape.

Funder

National Cancer Institute

indiana clinical and translational sciences institute

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3