Affiliation:
1. Department of Epidemiology and Biostatistics, Amsterdam UMC, Location VUMC, Amsterdam, the Netherlands
2. Department of Epidemiology, Erasmus MC
3. Health Technology and Services Research Department, Faculty of Behavioral Management and Social Sciences, Technical Medical Centre, University of Twente, Enschede, the Netherlands
Abstract
Background Metamodeling may substantially reduce the computational expense of individual-level state transition simulation models (IL-STM) for calibration, uncertainty quantification, and health policy evaluation. However, because of the lack of guidance and readily available computer code, metamodels are still not widely used in health economics and public health. In this study, we provide guidance on how to choose a metamodel for uncertainty quantification. Methods We built a simulation study to evaluate the prediction accuracy and computational expense of metamodels for uncertainty quantification using life-years gained (LYG) by treatment as the IL-STM outcome. We analyzed how metamodel accuracy changes with the characteristics of the simulation model using a linear model (LM), Gaussian process regression (GP), generalized additive models (GAMs), and artificial neural networks (ANNs). Finally, we tested these metamodels in a case study consisting of a probabilistic analysis of a lung cancer IL-STM. Results In a scenario with low uncertainty in model parameters (i.e., small confidence interval), sufficient numbers of simulated life histories, and simulation model runs, commonly used metamodels (LM, ANNs, GAMs, and GP) have similar, good accuracy, with errors smaller than 1% for predicting LYG. With a higher level of uncertainty in model parameters, the prediction accuracy of GP and ANN is superior to LM. In the case study, we found that in the worst case, the best metamodel had an error of about 2.1%. Conclusion To obtain good prediction accuracy, in an efficient way, we recommend starting with LM, and if the resulting accuracy is insufficient, we recommend trying ANNs and eventually also GP regression.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献