Risk Assessment for Venous Thromboembolism in Chemotherapy-Treated Ambulatory Cancer Patients

Author:

Ferroni Patrizia12345,Zanzotto Fabio Massimo12345,Scarpato Noemi12345,Riondino Silvia12345,Nanni Umberto12345,Roselli Mario12345,Guadagni Fiorella12345

Affiliation:

1. San Raffaele Roma Open University, Rome, Italy (PF, NS, FG)

2. Department of Enterprise Engineering, University of Rome “Tor Vergata,” Rome, Italy (FMZ)

3. BioBIM (InterInstitutional Multidisciplinary Biobank, IRCCS San Raffaele Pisana, Rome, Italy (SR, FG)

4. Department of Systems Medicine, Medical Oncology, University of Rome “Tor Vergata,” Rome, Italy (SR, MR)

5. Department of Computer, Control, and Management Engineering Antonio Ruberti, Sapienza University, Rome, Italy (UN)

Abstract

Objective. To design a precision medicine approach aimed at exploiting significant patterns in data, in order to produce venous thromboembolism (VTE) risk predictors for cancer outpatients that might be of advantage over the currently recommended model (Khorana score). Design: Multiple kernel learning (MKL) based on support vector machines and random optimization (RO) models were used to produce VTE risk predictors (referred to as machine learning [ML]-RO) yielding the best classification performance over a training (3-fold cross-validation) and testing set. Results. Attributes of the patient data set ( n = 1179) were clustered into 9 groups according to clinical significance. Our analysis produced 6 ML-RO models in the training set, which yielded better likelihood ratios (LRs) than baseline models. Of interest, the most significant LRs were observed in 2 ML-RO approaches not including the Khorana score (ML-RO-2: positive likelihood ratio [+LR] = 1.68, negative likelihood ratio [–LR] = 0.24; ML-RO-3: +LR = 1.64, –LR = 0.37). The enhanced performance of ML-RO approaches over the Khorana score was further confirmed by the analysis of the areas under the Precision-Recall curve (AUCPR), and the approaches were superior in the ML-RO approaches (best performances: ML-RO-2: AUCPR = 0.212; ML-RO-3-K: AUCPR = 0.146) compared with the Khorana score (AUCPR = 0.096). Of interest, the best-fitting model was ML-RO-2, in which blood lipids and body mass index/performance status retained the strongest weights, with a weaker association with tumor site/stage and drugs. Conclusions. Although the monocentric validation of the presented predictors might represent a limitation, these results demonstrate that a model based on MKL and RO may represent a novel methodological approach to derive VTE risk classifiers. Moreover, this study highlights the advantages of optimizing the relative importance of groups of clinical attributes in the selection of VTE risk predictors.

Publisher

SAGE Publications

Subject

Health Policy

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3