Author:
Wei Conghui,Wang Jialiang,Yu Pengfei,Li Ang,Xiong Ziying,Yuan Zhen,Yu Lingling,Luo Jun
Abstract
AbstractDeep vein thrombosis (DVT) is a common complication in patients with lower extremity fractures. Once it occurs, it will seriously affect the quality of life and postoperative recovery of patients. Therefore, early prediction and prevention of DVT can effectively improve the prognosis of patients. This study constructed different machine learning models to explore their effectiveness in predicting DVT. Five prediction models were applied to the study, including Extreme Gradient Boosting (XGBoost) model, Logistic Regression (LR) model, RandomForest (RF) model, Multilayer Perceptron (MLP) model, and Support Vector Machine (SVM) model. Afterwards, the performance of the obtained prediction models was evaluated by area under the curve (AUC), accuracy, sensitivity, specificity, F1 score, and Kappa. The prediction performances of the models based on machine learning are as follows: XGBoost model (AUC = 0.979, accuracy = 0.931), LR model (AUC = 0.821, accuracy = 0.758), RF model (AUC = 0.970, accuracy = 0.921), MLP model (AUC = 0.830, accuracy = 0.756), SVM model (AUC = 0.713, accuracy = 0.661). On our data set, the XGBoost model has the best performance. However, the model still needs external verification research before clinical application.
Funder
Project of the Science and Technology Department of Jiangxi Province, China
Science and technology support project of Jiangxi Provincial Health Commission
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献