Understanding the Value of Individualized Information: The Impact of Poor Calibration or Discrimination in Outcome Prediction Models

Author:

Olchanski Natalia12,Cohen Joshua T.12,Neumann Peter J.12,Wong John B.12,Kent David M.12

Affiliation:

1. Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA (NO, JTC, PJN, JBW, DMK)

2. Division of Clinical Decision Making, Tufts Medical Center, Boston, MA (JBW)

Abstract

Background. Risk prediction models allow for the incorporation of individualized risk and clinical effectiveness information to identify patients for whom therapy is most appropriate and cost-effective. This approach has the potential to identify inefficient (or harmful) care in subgroups at different risks, even when the overall results appear favorable. Here, we explore the value of personalized risk information and the factors that influence it. Methods. Using an expected value of individualized care (EVIC) framework, which monetizes the value of customizing care, we developed a general approach to calculate individualized incremental cost effectiveness ratios (ICERs) as a function of individual outcome risk. For a case study (tPA v. streptokinase to treat possible myocardial infarction), we used a simulation to explore how an EVIC is influenced by population outcome prevalence, model discrimination (c-statistic) and calibration, and willingness-to-pay (WTP) thresholds. Results. In our simulations, for well-calibrated models, which do not over- or underestimate predicted v. observed event risk, the EVIC ranged from $0 to $700 per person, with better discrimination (higher c-statistic values) yielding progressively higher EVIC values. For miscalibrated models, the EVIC ranged from −$600 to $600 in different simulated scenarios. The EVIC values decreased as discrimination improved from a c-statistic of 0.5 to 0.6, before becoming positive as the c-statistic reached values of ~0.8. Conclusions. Individualizing treatment decisions using risk may produce substantial value but also has the potential for net harm. Good model calibration ensures a non-negative EVIC. Improvements in discrimination generally increase the EVIC; however, when models are miscalibrated, greater discriminating power can paradoxically reduce the EVIC under some circumstances.

Funder

National Institutes of Health

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3