Development and validation of a nomogram model for prediction of stroke-associated pneumonia associated with intracerebral hemorrhage

Author:

Wang Ying,Chen Yuting,Chen Roumeng,Xu Yuchen,Zheng Han,Xu Jiajun,Xia Jinyang,Cai Yifan,Xu Huiqin,Wang Xinshi

Abstract

Abstract Background We aimed to establish risk factors for stroke-associated pneumonia (SAP) following intracerebral hemorrhage (ICH) and develop an efficient and convenient model to predict SAP in patients with ICH. Methods Our study involved 1333 patients consecutively diagnosed with ICH and admitted to the Neurology Department of the First Affiliated Hospital of Wenzhou Medical University. The 1333 patients were randomly divided (3:1) into the derivation cohort (n = 1000) and validation Cohort (n = 333). Variables were screened from demographics, lifestyle-related factors, comorbidities, clinical symptoms, neuroimaging features, and laboratory tests. In the derivation cohort, we developed a prediction model with multivariable logistic regression analysis. In the validation cohort, we assessed the model performance and compared it to previously reported models. The area under the receiver operating characteristic curve (AUROC), GiViTI calibration belt, net reclassification index (NRI), integrated discrimination index (IDI) and decision curve analysis (DCA) were used to assess the prediction ability and the clinical decision-making ability. Results The incidence of SAP was 19.9% and 19.8% in the derivation (n = 1000) and validation (n = 333) cohorts, respectively. We developed a nomogram prediction model including age (Odds Ratio [OR] 1.037, 95% confidence interval [CI] 1.020–1.054), male sex (OR 1.824, 95% CI 1.206–2.757), multilobar involvement (OR 1.851, 95% CI 1.160–2.954), extension into ventricles (OR 2.164, 95% CI 1.456–3.215), dysphagia (OR 3.626, 95% CI 2.297–5.725), disturbance of consciousness (OR 2.113, 95% CI 1.327–3.362) and total muscle strength of the worse side (OR 0.93, 95% CI 0.876–0.987). Compared with previous models, our model was well calibrated and showed significantly higher AUROC, better reclassification ability (improved NRI and IDI) and a positive net benefit for predicted probability thresholds between 10% and 73% in DCA. Conclusions We developed a simple, valid, and clinically useful model to predict SAP following ICH, with better predictive performance than previous models. It might be a promising tool to assess the individual risk of developing SAP for patients with ICH and optimize decision-making.

Funder

National Natural Science Foundation of China

Science and Technology Plan Project of Wenzhou, China

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3