Predicting the Effectiveness of Endemic Infectious Disease Control Interventions: The Impact of Mass Action versus Network Model Structure

Author:

Malloy Giovanni S. P.1ORCID,Goldhaber-Fiebert Jeremy D.2,Enns Eva A.3,Brandeau Margaret L.1

Affiliation:

1. Department of Management Science and Engineering, Stanford University, Stanford, CA, USA

2. Stanford Health Policy, Centers for Health Policy and Primary Care and Outcomes Research, Stanford University, Stanford, CA, USA

3. School of Public Health, University of Minnesota, Minneapolis, MN, USA

Abstract

Background Analyses of the effectiveness of infectious disease control interventions often rely on dynamic transmission models to simulate intervention effects. We aim to understand how the choice of network or compartmental model can influence estimates of intervention effectiveness in the short and long term for an endemic disease with susceptible and infected states in which infection, once contracted, is lifelong. Methods We consider 4 disease models with different permutations of socially connected network versus unstructured contact (mass-action mixing) model and heterogeneous versus homogeneous disease risk. The models have susceptible and infected populations calibrated to the same long-term equilibrium disease prevalence. We consider a simple intervention with varying levels of coverage and efficacy that reduces transmission probabilities. We measure the rate of prevalence decline over the first 365 d after the intervention, long-term equilibrium prevalence, and long-term effective reproduction ratio at equilibrium. Results Prevalence declined up to 10% faster in homogeneous risk models than heterogeneous risk models. When the disease was not eradicated, the long-term equilibrium disease prevalence was higher in mass-action mixing models than in network models by 40% or more. This difference in long-term equilibrium prevalence between network versus mass-action mixing models was greater than that of heterogeneous versus homogeneous risk models (less than 30%); network models tended to have higher effective reproduction ratios than mass-action mixing models for given combinations of intervention coverage and efficacy. Conclusions For interventions with high efficacy and coverage, mass-action mixing models could provide a sufficient estimate of effectiveness, whereas for interventions with low efficacy and coverage, or interventions in which outcomes are measured over short time horizons, predictions from network and mass-action models diverge, highlighting the importance of sensitivity analyses on model structure. Highlights • We calibrate 4 models—socially connected network versus unstructured contact (mass-action mixing) model and heterogeneous versus homogeneous disease risk—to 10% preintervention disease prevalence. • We measure the short- and long-term intervention effectiveness of all models using the rate of prevalence decline, long-term equilibrium disease prevalence, and effective reproduction ratio. • Generally, in the short term, prevalence declined faster in the homogeneous risk models than in the heterogeneous risk models. • Generally, in the long term, equilibrium disease prevalence was higher in the mass-action mixing models than in the network models, and the effective reproduction ratio was higher in network models than in the mass-action mixing models.

Funder

Agency for Healthcare Research and Quality

National Institute on Drug Abuse

Publisher

SAGE Publications

Subject

Health Policy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3