Effects of Mitigation and Control Policies in Realistic Epidemic Models Accounting for Household Transmission Dynamics

Author:

Alarid-Escudero Fernando12ORCID,Andrews Jason R.3,Goldhaber-Fiebert Jeremy D.12ORCID

Affiliation:

1. Department of Health Policy, School of Medicine, Stanford University, Stanford, CA, USA

2. Center for Health Policy, Freeman Spogli Institute, Stanford University, Stanford, CA, USA

3. Department of Medicine, School of Medicine, Stanford University, Stanford, CA, USA

Abstract

Background Compartmental infectious disease (ID) models are often used to evaluate nonpharmaceutical interventions (NPIs) and vaccines. Such models rarely separate within-household and community transmission, potentially introducing biases in situations in which multiple transmission routes exist. We formulated an approach that incorporates household structure into ID models, extending the work of House and Keeling. Design We developed a multicompartment susceptible-exposed-infectious-recovered-susceptible-vaccinated (MC-SEIRSV) modeling framework, allowing nonexponentially distributed duration in exposed and infectious compartments, that tracks within-household and community transmission. We simulated epidemics that varied by community and household transmission rates, waning immunity rate, household size (3 or 5 members), and numbers of exposed and infectious compartments (1–3 each). We calibrated otherwise identical models without household structure to the early phase of each parameter combination’s epidemic curve. We compared each model pair in terms of epidemic forecasts and predicted NPI and vaccine impacts on the timing and magnitude of the epidemic peak and its total size. Meta-analytic regressions characterized the relationship between household structure inclusion and the size and direction of biases. Results Otherwise similar models with and without household structure produced equivalent early epidemic curves. However, forecasts from models without household structure were biased. Without intervention, they were upward biased on peak size and total epidemic size, with biases also depending on the number of exposed and infectious compartments. Model-estimated NPI effects of a 60% reduction in community contacts on peak time and size were systematically overestimated without household structure. Biases were smaller with a 20% reduction NPI. Because vaccination affected both community and household transmission, their biases were smaller. Conclusions ID models without household structure can produce biased outcomes in settings in which within-household and community transmission differ. Highlights Infectious disease models rarely separate household transmission from community transmission. The pace of household transmission may differ from community transmission, depends on household size, and can accelerate epidemic growth. Many infectious disease models assume exponential duration distributions for infected states. However, the duration of most infections is not exponentially distributed, and distributional choice alters modeled epidemic dynamics and intervention effectiveness. We propose a mathematical framework for household and community transmission that allows for nonexponential duration times and a suite of interventions and quantified the effect of accounting for household transmission by varying household size and duration distributions of infected states on modeled epidemic dynamics. Failure to include household structure induces biases in the modeled overall course of an epidemic and the effects of interventions delivered differentially in community settings. Epidemic dynamics are faster and more intense in populations with larger household sizes and for diseases with nonexponentially distributed infectious durations. Modelers should consider explicitly incorporating household structure to quantify the effects of non-pharmaceutical interventions (e.g., shelter-in-place).

Funder

Wadhwani Institute for Artificial Intelligence Foundation

Open Society Foundations

Gordon and Betty Moore Foundation

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3