Analgesic effect of gastrin-releasing peptide in the dorsal horn

Author:

Saeki Ayano12,Yamanaka Hiroki1ORCID,Kobayashi Kimiko1,Okubo Masamichi1ORCID,Noguchi Koichi1

Affiliation:

1. Department of Anatomy and Neuroscience, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan

2. Department of Anesthesiology and Pain Medicine, Faculty of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan

Abstract

Itch and pain are both unpleasant, but they are discrete sensations. Both of these sensations are transmitted by C-fibers and processed in laminae I-II of the dorsal horn. To examine whether pruriception modulates pain, we first confirmed the activation of cells in the itch-related circuits that were positive for gastrin-releasing peptide (GRP) and GRP receptor (GRPR) using a paw formalin injection model. This pain model with typical biphasic pain behavior increased c-Fos but did not affect the expressions of GRP and GRPR mRNAs in the dorsal horn. Using c-Fos expression as a marker for activated cells, we confirmed that formalin injection increased the number of cells double-labeled for c-Fos and GRP or GRPR in the dorsal horn. The emergence of these neurons indicates the activation of itch-related circuits by acute pain signals. The effect of an antagonist for a GRPR was examined in the paw formalin injection model. Intrathecal chronic antagonization of spinal GRPR enhanced the onset of phase II of paw formalin injection-induced pain behavior. Exogenous intrathecal GRP infusion to the paw-formalin injection model not only showed significant reduction of pain behavior but also increased c-Fos in the inhibitory neurons in the dorsal horn. The anti-nociceptive effect of spinal GRP infusion was observed in the peripheral inflammation model (complete Freund’s adjuvant injection model). In this study we suggest that painful stimuli activated itch-related neuronal circuits and uncovered the spinal activation of the itch-induced analgesic effect on acute and established inflammatory pain.

Funder

Japan Society for the Promotion of Science Grants

Hyogo College of Medicine Diversity Grant for Research Promotion

Grant-in-Aid for Researchers, Hyogo Medical University

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Cellular and Molecular Neuroscience,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3